
Flexible Oktaeder unter Anbetracht von Fernelementen

Georg Nawratil

Institut für Diskrete Mathematik und Geometrie

Technische Universität Wien, Österreich
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Bricard octahedra

An octahedron is called flexible, if
its spatial shape can be changed
continuously due to changes of its
dihedral angles only, i.e. every face
remains congruent to itself during
the flex.

All flexible octahedra in E3, where
no two faces coincide permanently
during the flex, were firstly determi-
ned by Bricard [1].

There are 3 types of these so-called
Bricard octahedra:

Bricard octahedra of type I

All three pairs of opposite vertices are
symmetric with respect to a line.
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Bricard octahedra

Bricard octahedra of type II

Two pairs of opposite vertices are
symmetric with respect to a plane
through the remaining two vertices.

Bricard octahedra of type III

These octahedra possess two flat poses
and can be constructed as follows:
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Different points of view

Kokotsakis mesh

Σ0

A Kokotsakis mesh is a polyhedral
structure, consisting of a n-sided cen-
tral polygon Σ0, surrounded by a belt
of polygons (cf. Kokotsakis [5]).

Stewart Gough platform

A SGP is a parallel manipula-
tor, where the platform is connec-
ted via three Spherical-Prismatic-
Spherical (SPS) legs with the base.
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Flexible octahedra in the projective extension of E3

Presented results are published in:

[A] Reducible compositions of spherical four-bar linkages with a spherical coupler
component. Mechanism and Machine Theory 46 (5) 725-742 (2011)

[B] Self-motions of TSSM manipulators with two parallel rotary axes. ASME
Journal of Mechanisms and Robotics 3 (3) 031007 (2011)

[C] Flexible octahedra in the projective extension of the Euclidean 3-space. Journal
for Geometry and Graphics 14 (2) 147-169 (2010).
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1. Basic idea for the proof of the given results
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The relative motions Σi+1/Σi is a sphe-
rical 4-bar motion (cf. Stachel [12]).
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The Kokotsakis mesh is flexible, if and only if, the transmission of the composition
of two spherical 4-bar linkages can be replaced by a single spherical 4-bar linkage.
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1a. One vertex is an ideal point

Theorem 1 Nawratil [B]

There exist two flexible octahedra, where one vertex is an ideal point: Bricard
octahedron II, where one vertex located in the plane of symmetry is an ideal point.
Bricard octahedron III, where one vertex is an ideal point (see also Stachel [11]).
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1a. Flexible octahedra with edge or face at infinity

Theorem 2 Nawratil [C]

In the projective extension of E3 there do not exist flexible octahedra with a finite
face Σ0 and one edge or face at infinity.

Σ0
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1b. One pair of opposite vertices are ideal points

Theorem 3 Nawratil [C]

The two pairs of opposite vertices (V1, V4) and (V2, V5) are symmetric with respect
to a common line as well as the edges of the prisms through the ideal points V3

and V6, respectively.
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1b. One pair of opposite vertices are ideal points

Theorem 4 Nawratil [C]

One pair of opposite vertices (V2, V5) is symmetric with respect to a plane, which
contains the vertices (V3, V6). Moreover, also the edges of the prisms through the
ideal points V1 and V4 are symmetric with respect to this plane.
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1b. One pair of opposite vertices are ideal points

Theorem 5 Nawratil [C]

The vertices V1, V2, V4, V5 are coplanar, form an antiparallelogram and its plane of
symmetry is parallel to the edges of the prisms through the ideal points V3 and V6,
respectively.
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1b. One pair of opposite vertices are ideal points

Theorem 6 Nawratil [C]

This type is characterized by the existence of two flat poses and consists of two
prisms through the ideal points V3 and V6, where the orthogonal cross sections are
congruent antiparallelograms. The construction can be done as follows:
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1b. One pair of opposite vertices are ideal points

Theorem 7 Nawratil [C]

The vertices V1, V2, V4, V5 are coplanar and form a parallelogram. The ideal points
V3 and V6 can be chosen arbitrarily.
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1b. One pair of opposite vertices are ideal points

Theorem 8 Nawratil [C]

The vertices V1, V2, V4, V5 are coplanar, form a deltoid and the edges of the prisms
through the ideal points V3 and V6 are orthogonal to the deltoid’s line of symmetry.

V1

V2

V3∈ω

V5

V6∈ωV4

V2

V4
V5

V1

33. Fortbildungstagung für Geometrie, Strobl, 6.–8. November 2012 14



1c. Trivial cases

Theorem 9 Nawratil [C]

In the projective extension
of E3, any octahedron is
flexible, where at least two
edges are ideal lines but
no face coincides with the
plane at infinity.

There are only two types
of octahedra fulfilling the
requirements of theorem 9.
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1d. Application in school

Trivially, the two types of flexible octahedra, given in Theorem 7 and Theorem
8, which do not have flexible analogue Bricard octahedra, can be built as paper
models without self-intersections.

V2

V4

V5

V1

V2

V4
V5

V1

33. Fortbildungstagung für Geometrie, Strobl, 6.–8. November 2012 16



1d. Nets for paper models

All nets can be downloaded from www.geometrie.tuwien.ac.at/nawratil/talks.html

V1

V5

V1

V2

V4

V1

V2

V4
V2

V4

V2

V1

V5

V2

V1

V5

33. Fortbildungstagung für Geometrie, Strobl, 6.–8. November 2012 17



1d. Application in school

In addition the flexible octahedra of Theorem 3 and Theorem 4 can also be built
as paper models without self-intersections, if we ”materialize“ the complementary
part of one of the displayed prisms.
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1d. Nets for paper models
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1d. Application in school

The remaining two flexible octahedra of Theorem 5 and Theorem 6, respectively,
are not suited to be built as paper models, as the orthogonal section of each
involved prism is an antiparallelogram.
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Self-movable SGPs implied by Bricard octahedra I

Presented results are published in:

[D] Types of self-motions of planar Stewart Gough platforms. Meccanica, conditio-
nally accepted.

[E] Necessary conditions for type II DM self-motions of planar Stewart Gough
platforms. Journal for Geometry and Graphics, conditionally accepted.

[F] Planar Stewart Gough platforms with a type II DM self-motion. Journal of
Geometry 102 (1) 149-169 (2011)
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2a. Singular configurations of SGPs

The geometry of a SGP is given by the six
base anchor points Mi ∈ Σ0 and by the six
platform points mi ∈ Σ.

A SGP is called planar, if M1, . . . , M6 are
coplanar and m1, . . . ,m6 are coplanar.

Mi and mi are connected with a SPS leg.

Theorem 10 Merlet [6]

A SGP is singular (infinitesimal flexible,
shaky), if and only if, the carrier lines of the
six SPS legs belong to a linear line complex.

Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ
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2a. Self-motions and the Borel Bricard problem

If all P-joints are locked, a SGP is in general rigid. But, in some special cases the
SGP can perform an n-parametric motion (n > 0), which is called self-motion.

It should be noted, that in each pose of the self-motion, the SGP has to be singular.

Moreover, all self-motions of SGPs are
solutions to the problem posed by the
French Academy of Science for the Prix

Vaillant (1904), which is also known as

Borel Bricard problem (still unsolved)

Determine and study all displacements of a
rigid body in which distinct points of the
body move on spherical paths.
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2a. Self-motions of octahedral SGPs

Clearly, all Bricard octahedra imply self-motions of octahedral SGPs. But, if we
allow two faces to coincide permanently during the flex, there exist two more types
of octahedral self-motions (cf. Stachel [10], Karger [4]):

Butterfly motion Spherical four-bar motion
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2a. Architecturally singular SGPs

SGPs, which are singular in every configuration, are called architecturally singular.

Architecturally singular SGPs are well studied:

⋆ For the planar case see Röschel & Mick [9],

Karger [2], Nawratil [7] and Wohlhart [13].

⋆ For the non-planar case see Karger [3] and

Nawratil [8].

Architecturally singular SGPs possess self-
motions in each pose (over C).

Mi

mi

⇒ We are interested in non-
architecturally singular SGPs
with self-motions.
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2b. Darboux constraints of octahedral SGPs

We can attach the following 3 pencils of additional legs to an octahedral SGP
without changing the direct kinematics and the set of singular configurations:

U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2

U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3

u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2 u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

Each leg uiUi for i = 1, 2, 3 imply a so-called Darboux motion, which means that
ui moves in a plane ∈ Σ0 orthogonal to the direction of the ideal point Ui.
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2b. Mannheim constraints of octahedral SGPs

We can attach the following 3 pencils of additional legs to an octahedral SGP
without changing the direct kinematics and the set of singular configurations:

U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6

u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4

u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6

Each leg uiUi for i = 4, 5, 6 imply a so-called Mannheim motion, which means that
a plane of Σ orthogonal to uj slides through the point Uj ∈ Σ0.
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2c. Self-motions implied by Bricard octahedra I

We attach the six special legs uiUi for i = 1, . . . , 6 to an octahedral SGP
m1, . . . , M6, which is a Bricard octahedron of type I. These additional legs do not
disturb the self-motion M of the line-symmetric octahedron.

We remove the original six legs miMi and remain with the manipulator u1, . . . , U6.
It can be shown, that the manipulator u1, . . . ,U6 is architecturally singular and
that it has a 2-parametric self-motion U , which contains M (cf. Nawratil [D]).

Now, we can add any leg nN, where the finite points n and N are located in the
planar platform and planar base, respectively. This leg restricts the 2-parametric
self-motion U to a 1-parametric self-motion N .
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2c. Self-motions implied by Bricard octahedra I
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Moreover, the points n and N determine a 1-parametric set of legs, which can be
attached to the manipulator u1, . . . , U6, n, N without disturbing the self-motion N .
The anchor points of these legs are located on congruent cubics (cf. Nawratil [D]).
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2c. Self-motions implied by Bricard octahedra I
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Any six finite pairs of anchor points, which do not yield an architecturally singular
SGP, are a solution to our problem (e.g. n1, . . . , N6).
Note that n2, . . . , N7 is an example for an architecturally singular SGP.
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2d. New property of Bricard octahedra I

The presented construction was studied in a more general setting in Nawratil [E,F].
Within this generalization, it turned out, that each Bricard octahedron of type I
with vertices 1a, 1b, 2a, 2b, 3a, 3b, where va and vb are symmetric with respect to
the line s for v ∈ {1, 2, 3}, possesses the following property:

Theorem 11 Nawratil [E]

The following 3 planes have a common line Tijk:

⋆ plane orthogonal to [1i, 2j] though 3k′

⋆ plane orthogonal to [2j, 3k] though 1i′

⋆ plane orthogonal to [3k, 1i] though 2j′

with i 6= i′, j 6= j′, k 6= k′ ∈ {a, b}.

1a1b

s

2a

2b

3a

3b

Taaa
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2d. Example

All eight possible axes Tijk of the following Bricard octahedron I are drawn:
1a = (1, 0, 0), 2a = (5, 3,−6), 3a = (−2,−7,−9), line of symmetry s is the z-axis.
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