Geometrie in der Spieltheorie Evolutionäre Spieltheorie

Martin Hahn

November 3, 2011

Evolution der Spieltheorie

John von Neumann, Oskar Morgenstern

1944: The Theory of Games and Economic Behavior

John Nash

1950: Non-cooperative Games

Nash Gleichgewicht: Kein Spieler kann sich durch einseitiges

Abweichen verbessern.

John Maynard Smith

1973: Evolutionär stabile Strategie

ESS: Eine neue Strategie/Spezies kann in eine bestehendes System

nicht eindringen.

Das Ziel der Spieltheorie

Was ist das ideale Geschenk?

Das Ziel der Spieltheorie

Was ist das ideale Geschenk?

⇒teuer, aber nutzlos!

Evolutionäre Spiel Theorie

Eine Population von Spielern, die zufällig zusammen gelost werden um ein Spiel zu spielen.

Zwei mögliche Interpretationen

Evolutionäre Spiel Theorie

Eine Population von Spielern, die zufällig zusammen gelost werden um ein Spiel zu spielen.

Zwei mögliche Interpretationen

- Spieler passen ihr Verhalten an die Auszahlungen an.
 - \Rightarrow Lernverhalten

Evolutionäre Spiel Theorie

Eine Population von Spielern, die zufällig zusammen gelost werden um ein Spiel zu spielen.

Zwei mögliche Interpretationen

- Spieler passen ihr Verhalten an die Auszahlungen an.
 - ⇒ Lernverhalten
- Die Anzahl der Nachkommen hängt von der Auszahlung ab.
 - ⇒ klassische Evolution

Ein Normalform Spiel setzt sich zusammen aus

- n Spielern.
- einer Menge von Strategien $S_1, S_2, ..., S_n$ für jeden der n Spieler.

Ein Normalform Spiel setzt sich zusammen aus

- n Spielern.
- einer Menge von Strategien $S_1, S_2, ..., S_n$ für jeden der n Spieler.
- einer Menge von Auszahlungs/Nutzenfunktionen $u_1, u_2, ..., u_n$.

Ein Normalform Spiel setzt sich zusammen aus

- n Spielern.
- einer Menge von Strategien $S_1, S_2, ..., S_n$ für jeden der n Spieler.
- einer Menge von Auszahlungs/Nutzenfunktionen $u_1, u_2, ..., u_n$.

Beschränken uns auf: Ein symmetrisches Zweipersonenspiel mit linearen Auszahlungen.

Die Auszahlungen werden in einer *Auszahlungsmatrix A* zusammengefasst.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{2n} & \dots & a_{nn} \end{pmatrix}$$

Damit bezeichnet a_{ij} die Auszahlung von Spieler 1, die er bekommt, wenn er Strategie i gegen Strategie j spielt.

Der Klassiker: Das Gefangenendilemma

Gefangene 2

Leugnen Gestehen

Gefangener 1

Leugnen Gestehen

 $\begin{array}{c|cccc}
-1 & -9 \\
\hline
0 & -6
\end{array}$

Table: Das Gefangenendilemma

Motivation der best response Dynamik

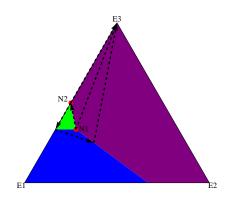
Spieler handeln kurzfristig und wechseln ihre Strategie zur momentan besten Strategie.

$$\dot{\mathbf{x}} \in BR(\mathbf{x}) - \mathbf{x}$$

hier bezeichnet BR die beste Antwort auf ein vorgegebenes Strategienprofil.

Man erhält eine sogenannte Differentialinklusion.

Was passiert nun wirklich?



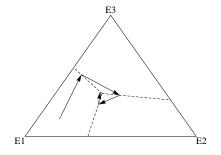
Stein-Schere-Papier oder: Eine oder viele Frauen?

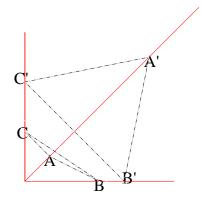
Verallgemeinerte Version

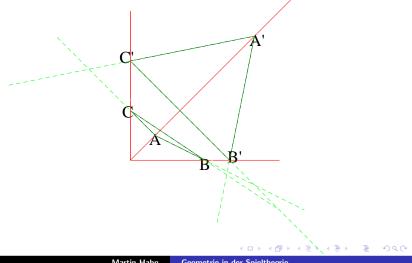
$$A = \left(\begin{array}{ccc} 0 & a_2 & -b_3 \\ -b_1 & 0 & a_3 \\ a_1 & -b_2 & 0 \end{array}\right)$$

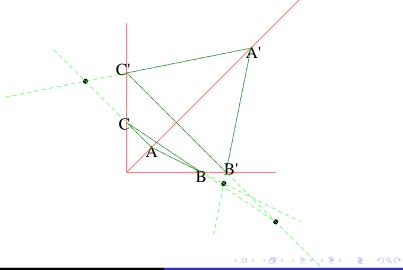
wobei $a_i > 0$ und $b_i > 0$.

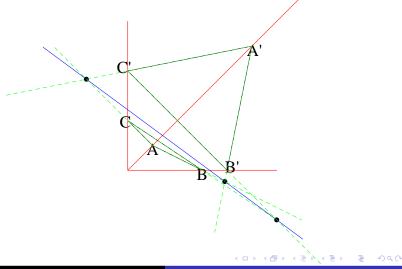
Dieses Spiel enthält einen Zyklus.



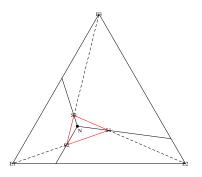








Beweis für die Eindeutigkeit des Shapley Polygons



Angenommen es gibt ein zweites Dreieck (T_1, T_2, T_3) das ebenso perspektiv zu N ist. Dann schneiden sich ihre Seiten in E_1 , E_2 and E_3 . Nach dem Satz von Desargues folgt dann, dass E_1 , E_2 und E_3 auf einer Gerade liegen.

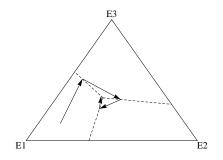
Stein-Schere-Papier genauer

Verallgemeinerte Version

$$A = \left(\begin{array}{ccc} 0 & a_2 & -b_3 \\ -b_1 & 0 & a_3 \\ a_1 & -b_2 & 0 \end{array}\right)$$

wobei $a_i > 0$ und $b_i > 0$.

Dieses Spiel enthält einen Zyklus.



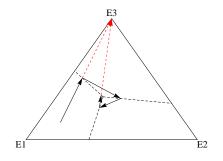
Stein-Schere-Papier genauer

Verallgemeinerte Version

$$A = \left(\begin{array}{ccc} 0 & a_2 & -b_3 \\ -b_1 & 0 & a_3 \\ a_1 & -b_2 & 0 \end{array}\right)$$

wobei $a_i > 0$ und $b_i > 0$.

Dieses Spiel enthält einen Zyklus.



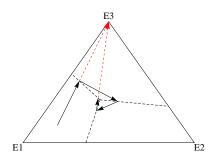
Stein-Schere-Papier genauer

Verallgemeinerte Version

$$A = \left(\begin{array}{ccc} 0 & a_2 & -b_3 \\ -b_1 & 0 & a_3 \\ a_1 & -b_2 & 0 \end{array}\right)$$

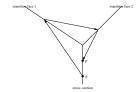
wobei $a_i > 0$ und $b_i > 0$.

Dieses Spiel enthält einen Zyklus.



⇒ Zentralprojektion: transition face nach transition face

Idee einer Rückkehrabbildung



Die Abbildung einer Kante (transition face) zur nächsten ist eine Zentralprojektion und damit eine projektive Abbildung.

$$T_1(\mathbf{u}) = \frac{P_1\mathbf{u}}{1 + \mathbf{d}_1 \cdot \mathbf{u}}$$

Die Hintereinanderausführung von projektiven Abbildungen ist wieder eine projektive Abbildung!

Iteration der Rückkehrabbildung

Alle Abbildungen ergeben somit:

$$T(\mathbf{x}) = \frac{P\mathbf{x}}{1 + \mathbf{d} \cdot \mathbf{x}}.$$

wobei im konkreten Fall

$$T(x) = \frac{kx}{1 + \lambda x}$$

mit λ einer Konstanten und $k = \frac{b_1b_2b_3}{a_1a_2a_3}$, somit

$$T^{n}(x) = \frac{k^{n}x}{1 + \lambda \frac{1 - k^{n}}{1 - k}x}$$

Iteration der Rückkehrabbildung

Alle Abbildungen ergeben somit:

$$T(\mathbf{x}) = \frac{P\mathbf{x}}{1 + \mathbf{d} \cdot \mathbf{x}}.$$

wobei im konkreten Fall

$$T(x) = \frac{kx}{1 + \lambda x}$$

mit λ einer Konstanten und $k = \frac{b_1b_2b_3}{a_1a_2a_3}$, somit

$$T^{n}(x) = \frac{k^{n}x}{1 + \lambda \frac{1 - k^{n}}{1 - k}x} \xrightarrow[n \to \infty]{} \begin{cases} 0 \text{ falls } k \le 1 \\ \neq 0 \text{ sonst} \end{cases}$$

Die Lösung

Figure: Falls det(A) > 0 gilt, strebt alles zum Gleichgewicht.

Figure: Falls det(A) < 0 gilt, strebt alles zum Shapley Polygon.